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PREFACE

As part of their continuing program, RAND' s Physical and Quantum

Electronics Group selects theoretical topics for study which should

be of ultimate interest to the Air Force. The present study gives

a calculation of the time required for metals to vaporize when

subjected to a laser beam. The theoretical study presented here

should serve as a guide to future experimental work.
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SUMMARY

In this Memorandum we consider tne interaction of laser light

with a metal. A model is proposed in which the dominant mechanism

for electron de-excitation in transition metals is by the emission

of optical phonons, as contrasted to the simple metals where the

dominant mechanism is by the emission of acoustic phonons. Cal-

culations based on this model give, for steel, an electron--optical

phonon relaxation time - 10-7 to 10"6 sec compared with an electron--

acoustic phonon relaxation time - 10l to 10l sec for a simple

metal such as copper.
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I. iNTRaD cuT

In this Memorandum we investigate a mechanism by which excited

conduction electrons in a metal may interact with the crystalline

lattice. This interaction causes the electron to transfer its energy

to the lattice. Specifically we will be interested in the case where

all of the conduction electrons per unit volume are excited by photons

of energy of the order of a few ev. For n (number of conduction elec-

trons per cc) - 0 to 1023 a total photon energy of the order of

l03 to 104 joules per cc must be deposited in the metal.* Energy den-

sities of this order of magnitude might conceivably be supplied by a

pulsed laser beam (that is, an intense coherent light pulse).

What is ultimately desired would be to describe in detail the in-

teraction of a pulsed laser beam with a metal upon which it impinges.

Broadly speaking, such a description, if complete, would include a

discussion both of the absorption of the incident radiation by the

metal and the response of the metal to this deposited energy, includ-

ing possible damage effects. At present such a description does not

seem possible.

In the present work we separate somewhat artificially the proces-

sion of events into absorption (electron excitation) followed by elec-

tron de-excitation and lattice excitation. The validity of this ap-

proach depends on the relative magnitudes of the laser pulse length

(in time) and the electron lattice relaxation time. That is, as photons

For example, the vaporization energy of iron is ev per atom
(Ref. 1).
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are absorbed and excite electrons to higher states, these electrons

interact with the ions of the lattice and lose their energy.

Grossly this is manifested in a localized heating of the metal; melt-

ing or vaporization may even result. Indeed, if such change of state

begins to occur before all of the laser energy is deposited, the lat-

ter portion of the incident radiation encounters a dense high-tempera-

ture vapor (perhaps a plasna) from which it may be scattered (re-

radiating energy), as well as absorbed. Thus this portion of the

laser pulse may not even reach the solid metal to excite appreciable

nunbers of electrons. Owing to the extreme complexity of the complete

process we make the somewhat idealistic assumption that the laser pulse

is deposited (electrons are excited) in a time which is short compared

to the electron-lattice relaxation time (which we estimate in this

Memorandum*).

In Section II we give the assumptions and discuss a model of a

metal that is used to calculate the electron-lattice relaxation time.

In Section III we compute the relaxation time, and in Section IV we

discuss the results and give same numerical estimates for steel.

Same early crude experiments on steel indicate that our assump-
tion may be reasonable.
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II. MODEL FOR ELECTRON -- OPTICAL-PHONON INTERACTION

2
In the following we are using units with i c = 1 and e • 1/137.

We will denote the Rydberg (me 4/2) by R.

In the present work we assume that all of the conduction electrons

per cc (_ 1022 to 10 23) in a metal have been excited by absorbing a

photon of energy of the order (l/8)R (corresponding to a photon wave
0 *

length of = 7300 A). We assume that each electron interacts with cme

photon only. (In non-metallic lattices--solids with band separations

large compared to the photon energy--non-linear, multi-photon processes

may be very important in determining the absorption of the incident

radiation; this will not be investigated here.) Before interacting

with the photons the conduction electrons are assumed to be in an

equilibrium Fermi distribution. That is, the electrons fill a sphere

(in momentu•n space) up to a limiting momentum PF (or equivalently to

a limiting energy EF).

For free electrons it is well known that F [•P, = (2m E")/2]

is given by

EF = (/2m)(32 n)2/3

- (1/8)R for n - 1022

At this point we wish to divide various metals into two classes:

transition metals (e.g., Fe, Ni) and simple metals (e.g., Na, Cu).

Transition metals are distinguished from simple metals by having the

The photons will not appreciably interact with the ions because
their velocities are much smaller than the electrons (the electromag-
netic coupling is proportional to the current, i.e., velocity).
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d shells of the constituent atoms unfill.ed. For example, the copper

atom has a conpletely filled 3d shell (10 electrons) and a half-full

4s shell (one electron); the iron atom has six electrons in the 3d

shell and a completely full 4s shell (two electrons). In the band

theory the transition metals are characterized by having two unfilled

bands, namely, a wide low-density s-electron band and a narrow high-

density d-electron band (in the simple metals the d-electron band is

full). In iron, for example, the 4s-band, whose energy functions

approximate those of free electrons, overlaps the 3d-band, and can

take electrons from it. It can be shown, by various experiments, that

there are - 0.1 electrons per atom in the 4s-band in iron (See Ref. 2,

Chapter II, Table 2.10). In the transition metals, the Fermi level of

each band is at the same height in the equilibrium state (cf. Fig. 1).

Next, consider a metal during the time when the photons are being

deposited. In the simple metals the conduction electrons (s-electrons)

are induced to make intraband transitions by the laser light (Wlaser

=R/8 E_ 1.7 ev). The excited s-electrons interact among themselves

through their mutual coulomb interaction. The s-electrons can, to a

fair approximation, be treated as free particles, each with an ef-

fective mass --- mass of a free electron. The electron-electron relaxa-

tion time in a free electron gas (of density - 1022 to 1023/cc) is of

the order 10-13 to 10-14 sec. Therefore, for laser pulse lengths

>> l0-13 sec we expect that the s-electrons will be adiabatically

* The d-bands are rather narrow in energy compared to s-bands be-
cause the corresponding atomic wave functions do not spread far out
in the lattice to interact strongly with neighbors.
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Fig.1I -Filling of levels in transition metals
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heated (up to a final tenperature given by the energy of the laser

pulse divided by Boltzmann's constant) by the laser photons. That is,

the excited electrons can be taken to be in a Fermi distribution at

a temperature given by the energy in the laser pulse divided by Boltz-

mann' s constant.

The excited electrons may now interact with the ionic lattice,

giving up their energy to lattice vibrations (i.e., to phonons). In

this case the dominant decay mode is known to be through acoustic

phonons (see Ref. 2, Chapter 9). Electron--acoustic-phonon relaxation

times are of the order l0-13 sec. Hence in a time very small compared

with the laser pulse length (we envision laser pulses l0-8 sec) we

may assume that metallic bonds are broken.

Now consider the transition metals (e.g., Fe). Because of the un-

filled d-band, electrons are able, through their counteraction with

laser photons, to make interband transitions from the s-band into the

d-band, as well as intraband transitions to higher states in the s-band.

Electrons in excited s-band states may interact among thenselves via

their mutual coulomb interaction. However, because of the very high

density of states in the d-band, these excited s-band electrons will

The energy of acoustic phonons is < -= Km v, where Kax is
it/lattice spacing - lo-8 cm, and v is the speed of sound in the

metal - 5 x 105 cm/sec. A typical value for wmax is 0 0.1 ev.

Generally the energies of the acoustic phonons that result from
excited electrons are one or two orders of magnitude less than wmax (i.e.,

they have energy of the order 10 to 102 ev). Hence electrons must
undergo multiple collisions with the lattice before enough energy is
supplied to the lattice vibrations to break the metallic bands (- 1 ev per

atom). Assuming it takes 102 to 103 collisions, and treating each col-
lision as an indapendent event, we see that the time required for the
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scatter into the d-band. Once an electron is in the d-band it is

trapped, so to speak. That is, in the d-band the mutual coulcmb inter-

action between electrons is much weaker than for s-band electrons.

This is because d-band electrons are localized around the ion-core,

as opposed to s-band electrons which range over the whole unit cell.

So once an electron gets into a d-band it does not interact with

other electrons appreciably. Therefore, we assume that the excited

electron configuration in the transition metals consists of the d-band

filled as far as possibleand essentially no electrons in the s-band.

In this case, electron de-excitation via acoustic phonons will not

take place to any great extent. This is because if excited electrons

decay to the s-band by emitting acoustic phonons (which have energies

« 1 ev), these electrons (1) will interact among themselves via their

mutual coulomb interaction, and (2) they will absorb acoustic phonons.

Both effects thus tend to scatter the electrons back into the high

density of states d-band.

On the other hand, electron de-excitation via optical phonons

will result in much larger energy transfer to the lattice per colli-

sion than would de-excitation via acoustic phonons. In fact, the

energies of optical phonons are on the order of an ev. That is, in

a single collision (with the lattice) the excited electrons are able

metallic bands to be broken is of the order 10-10 to 10-ll sec, which
is still small compared with the laser pulse length. We can therefore
conclude that via acoustic phonons a simple metal becomes a high-density,
high-temperature vapor in a time short compared to the laser pulse
length.
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to lose all of the energy given to them by the laser photons. In this

case we expect that after a time of the order of the electron--optical-

phonon relaxation time, the laser energy will appear as lattice vibra-

tional energy.

Stumnming up, we are assuming that in the transition metals the

dominant decay mechanisms for excited electrons will be through optical

phonons (as contrasted to the dominant decay mechanism for excited

electrons in simple metals, which is through acoustic phonons). Al-

though the validity of this assumption can be investigated in more

detail, its ultimate verification must rest with experiment.

Optical phonon transitions are the important mechanism for

electron decay in dielectrics where energy gaps (of the order an ev)

separate the ground state from the excited state. Although the formu-

las developed below apply to dielectrics, as well as transition metals,

we shall give numerical estimates for steel only.

For the optical branch, the relation between energy and momentum

is w constant (i.e., approximately independent of K). We take the

optical branch to consist of a band of levels of energy of the order of
*

an ev. The group velocity of an optical mode is very nearly zero.

This means that if the electrons are excited in a localized volume the

optical phonons which result via electron de-excitation will stay con-

fined to this volume. That is, there will be essentially no transport

of lattice energy as there would be for acoustic modes (for which the

group velocity equals v). Also, we consider the unit cell to be made

up of two atoms (e.g., body-centered cubic structure).

The center of mass of each unit cell renains fixed for optical
modes.
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III. CAICULATION C' ELECTRON--PHCNON DECAY TIME

In this section we calculate the transition rate (probability

per unit time) for the excited electrons to decay by emitting a phonon.

The hamiltonian for the system, including electron--phonon inter-

action but neglecting electron--electron and ion--ion interactions is

H = 1  I Helec + Hint (2)

where Hphn is the hamiltonian for free motion of the lattice, H elec

is the hamiltonian for the free electrons (i.e., Helec describes the

motion of the conduction electrons in the periodic field of the fixed

lattice)(2) and 'lint, in the rigid ion approximation, is given by

Hit= E V( v(b E V .) (3)
L,b (

In Eq. (3) V(r - L) is the potential of the undistorted lattice at

due to atoms in the L'th unit cell, and %b is the displacement fram

equilibrium of the b'th atam in the L'th unit cell. In reality, when

the nucleus moves %,b' the surrounding electron core moves less.

This fact is neglected in Eq. (3).

Expanding Eq. (3) in powers of Q we find

Hin E - i ,b" V(r + I + E ) (QL,b) (,)
int L,b QL,b - 7 Lb

X V v(i - L) + .- (4)

For the moment we drop all but the first term of Eq. (4). Expanding

k•b in terms of phonon creation and destruction operators (denoted

by (Aa)* and AX respectively) and substituting into Eq. (4) we findK)



-10-

Hint = ± b (2Mb>K N i(p•) + complex
L,b,K,ce

conjugate] e,b "V(r-L) (6)

where

K is the phonon wave vector

uK is the frequency of the phonon of wave vector K

a is the phonon polarization direction

-Of is a unit vector in the direction of motion of the
ekb b'th atom for a phonon of wave vector K and polarization a

Mb is the mass of the atom located at S

The first and second terms in the square brackets in Eq. (6) correspond

to creation and absorption of a phonon of momentum K, respectively.

The transition probability per unit time for electrons of mamen-

tun p decaying to a state of momentun p' and emitting a phonon of mo-

mentun K = (p - 1') is given by

rI1 = 2v IM12 D (7)

where D is the density of final states per unit energy interval. For

a two-particle final state D is given by

d2I 
d-2-I_ (21 ()3 F. )3( in - final) §(Ein - Efinal) (8)

The matrix element between initial and final states of Hint is denoted

by M. The initial state is an electron of momentum p, and the final

state is an electron of momentum p' and a phonon of manentum K. Ex-

tracting from Hint (Eq. 6) the term appropriate to creation of a phonon
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of momentum K (see Fig. 2) we have

M= i=- 1 (.) 1/2 e--'fCLf *(F V(r - Y d3r"(9)
L~b,ce \'7ý b eK, b Or'P , p /

The integral in Eq. (9) extends over unit volume. In Eq. (9) the T's
p

are the well-known Bloch wave functions for electrons in a periodic

lattice. (p = eipr up (i), where u p(r + u) u (r) and !p1 inte-

grates to unity over unit volume.) In Eq. (9) up corresponds to a

d-band wave function and Up? to an s-band wave function. The eigen-

value corresponding to T p is p 2/2m, where m is an effective mass.

That is, the effect of the rigid lattice on the conduction electrons

is to cause a shift in their masses; otherwise the electrons behave

as if they were free. In the following we take m - free electron

mass (a- 3.8 x 10 R).

Owing to the periodicity of the lattice, the integral appearing

in Eq. (9) may be transformed as follows: The electronic wave func-

tions must satisfy Bloch's theorem, i.e.,

Yp(r - LE) Te- (

Each term in the sum over L in Eq. (9) contains an integral over the

whole volume. If we change the origin of the variable r in each inte-

gral to the center of the L'th cell and then apply Bloch' s theorem we

have

1/2
M= • -"(K )~, e-iL'(P' + K-p

-X V.i T d) (10)× ,b • p, V• •pdr
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P .-- <p 

I••

pF

Fig.2 - Single-phonon decay
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Since the integral must be the same in any cell, the sum over L may

now be done. This gives us a factor N times a Kronecker delta

+ + I -+ ( is an arbitrary reciprocal lattice vector, i.e.,

L G = integer multiple of 21c). The factor N may be absorbed by

assuming that the electron wave functions are now normalized to unity

over the unit cell and not over unit volume as was previously done.

We have

1/2

x k,b •P, V(r) \Yp(31

Henceforth we emit the Kronecker delta, keeping in mind that in a

transition we must have p = p' + K + G.

Now we specialize to optical phonons. For optical phonons we re-

place wK by a constant wo. Summing over b we have ( i - aeK,2
= -l eK,2 eka

M = i(l/2 w N)1/2 (M"1/2 - M2 "211)2 E U(•, ( ,) (32)

where

U ~ )Td 3r (13)

and M1 and M2 are the masses of the two atams of the unit cell.

From Eq. (12) we see that, to first order in the ionic displace-

ments, if Ml = M2, M =- 0. This is understandable, since for optical

modes the center of gravity of the unit cells remains fixed and thus

the contrary motions of the atoms just balance out in their scattering
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effect. By taking into account multi-phonon processes (i.e., the

effects of higher-order terms in the electron potential energy (see

Eq. 4)) one obtains a non-zero contribution to M. Multi-phonon pro-

cesses are discussed in the Appendix. For impure metals like steel

or alloys the right hand of Eq. (12) is nonzero.

We shall now study the problem of evaluating the integral U de-

fined by Eq. (13). In order to evaluate U we make the assumption that

the potential field surrounding each ion is rigidly attached to it,

and moves bodily with it. That is, we assume that V(r) can be

written as a sum of atcmic potentials

V(i) iZ Va(r - Ri) (14)
i

centered upon the ions at xi. Then

U • p, Vva -p d3r (15)

The integral in Eq. (15) should be carried out over the whole

volume. However, it should cause little error if we take the integral

over the unit cell. The potential of the bare ion does go beyond the

unit cell. But the other conduction electrons tend to screen out the

ionic potential beyond the unit cell.

In the model used here (i.e., rigid ion potential with spherical
symmetry round each atom) M =_ 0 to first order (in phonon coordinates).
In order to obtain a nonzero first-order effect it is necessary to use
a model where the non-equivalence of the fields about each atom in the
unit cell is taken into account.

Calculations based upon a less restrictive assumption have been
made by several authors, in particular by Bardeen (Ref. 3), but in the
present state of the theory these are refinements which are of doubtful
value since they only affect the numerical values of parameters which
cannot in any case be calculated very accurately.
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We are, in effect, using the Wigner-Seitz method (4) (also known

as the cellular method). In this method each atom of the lattice is

surrounded by its Wigner-Seitz cell--the cell bounded by the perpen-

dicular bisectors of the interatomic vectors (e.g., for a lattice with

the body-centered cubic structure, the Wigner-Seitz cell is a truncated

octahedron). The electron wave functions (for a given band) are of the

form

Y= e iP~r Uo(i)

where '1' + u (7) (16)*

u(+ -- U

and satisfies the boundary condition

Uo0 /ýn = 0,

ý/ýn denoting differentiation normal to the bounding planes. Since,

however, the Wigner-Seitz cells approximate closely to spheres, it is

a good approximation to apply this boundary condition over the surface

of a sphere of equal volume (if the radius of such a sphere is ro, we

have 4arr• = atomic volume). The boundary condition thus'beccnes

2= o (17)
0

Integrating the right-hand side of Eq. (15) by parts we obtain

GC, 51) = fa;ly;~~~ (18)

The electron wave functions for different bands have the quali-

tative forma of Eqs. (16). However, they differ quantitatively by hav-
ing a different function u 0 (r) for each different band.
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where, now, the integral is taken over a single cell. The integrated

term vanishes because the integrand is periodic. Now

v i' =• +peip'r u

Tpip Yp +eir u0

- i p Y (19)

where it is assumed that, over the greater part of the volume of the

cell, Vu is negligible. Hence from Eq. (18) and (19) we obtain

U (5, 5') S- i7e, (G - P') Va(r) p, YT d3r (20a)

ie- ( + Va(d) T, p 3r (20b)

K p1  p

where we have used conservation of quasi-momentum in obtaining Eq. (20b)

from Eq. (20a).

Now, Unp-Klapp processes (i.e., processes for which G j 0) are

responsible for scattering of electrons through angles greater than

2 sin-1 (2 -2/3) =_ 790. (3) Here, electrons will be scattered through

angles less than 1 rad. (- 57"). Henceforth we take G = 0. Conser-

vation of momentum now reads

p= K + •,(21)

With G = 0 the initial factor in Eq. (20b) becomes *k K. This indi-

cates that only longitudinal phonons will interact with electrons.

In order to estimate the integral in Eq. (20b) we argue as follows:

If, for the moment, we take p p' (i.e., consider an intraband transition

with K = 0) then we require the mean value of the potential energy over

For processes with G ý 0 transverse phonons may interact with
electrons. For then there is no guarantee that K + G is parallel to K.
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the unit cell. The magnitude of the mean value of the potential energy

is of the order of the average electron kinetic energy, which is of

the order of the Fermi energy. On the other hand, consider the value of

the integral for large K. Due to shielding (by other conduction

electrons) Va(r) - 0 for values of r greater than the order of the

interatomic distance. Hence the integral vanishes (because the inte-

grand contains the function e which oscillates rapidly for large

K).

Here, Kr ýý 1 which is intermediate between very small and very

large K. Also, we require the value of the integral for 'p describing

a d-band, and for "p, describing a s-band (i.e., we want the value of

the integral for an interband transition)ý In this case, the initial

and final wave functions contain different angular dependencies, which,

on integration will tend to reduce the value of the integral. Hence,

we expect that the value of the integral is less than EF (perhaps a

fraction < 1 of EF). To determine exactly how much less we would

have to determine a realistic potential V(r) that describes correctly

the properties of the metal, substitute this potential into a Schro-

dinger equation that includes electron-electron interactions (so as

to include screening), determine the electron wave functions and then

substitute the potential and wave functions into the integral. This,

however, is beyond the scope of the present work. Furthermore, since

Kr < 1, we see no reason to assume that the integral is a very sensitive

function of K. Therefore, we take the value of this integral to be

independent of K, and of magiitude approximately E, = R/8.

From what has just been said, we have
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U( ') =iKI for longitudinal modes

= 0 for transverse modes (22)

where I e! R/8.

From Eqs. (22), (12), (8), and (7) we have

r1 = 2t IMI2 D

(M1 12)_ (12/2 K2 ( ( )2 _ W (23)

(2,-• (23)

where o0 is the phonon energy.

In arriving at Eq. (23) we have used conservation of momentun

(Eq. (21)) and integrated over the final electron momentun (using the

delta function of momentim that appears in Eq. (8)). Here, ali of the
2

excited d-electrans (of energy ed(P) = + Vd, where is the

average potential energy of a d-electron) are taken to be in a narrow

region beginning at EF = R/8. The final energy is an s-band electron

(of energy (5 - R) 2 /2m), and an optical phonon of energy Wo (which is

independent of K). Choosing the polar axis along p and then integrat-

ing over the azimuthal angle we find

r M112-1 M 1/ 2 1 4(wN x K4d (f,.iR/m (K 2/2mn) -w ) (24)

2
where x = cosine of the angle between p and K, and w = 1)o+ L -

Integrating over K we find

rl = (M l'2 M; /2) 2 1 2 1/4 g woN) p3 2 dx 2

P1-(M1 2- 2 ) (/4.n 0 ) (x 2- a)4

X[x + - a) x - x2-a) (25)

Hereafter we drop the subscript s on m.
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where

a 2= 2 /p2 (26)

The lower limit on the integral in Eq. (25) comes from the requirement

that K be real.

The integration over x is elementary. The final result is

r 2 = c p3( -a2)/2 ( - a2/2) (27)

where

C (=Mf -1/2 M2 -V/2) 2 (M2/,t0N) (28)

Now,
2

to W • + 2- " a(P)

0 2

2 /2 \+VW •u + L - L- v (29)

(1 •o - Vd

Substituting Eqs. (28) and (29) into Eq. (27) we find

rI s. CPF3 (30)

In obtaining Eq. (30) we have taken wo° -Vd - EF, and p -p.. In the

next section we discuss Eq. (30), giving sane numerical estimates for

steel.
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IV. DISCUSSION AND CONCLUSIONS

Let us apply Eq. (30) to stainless steel (• 90 per cent Fe, 10 per

cent Cr). In this case we assume that 20 per cent of the unit cells

contain a Cr atan. (6  Therefore, the interaction amplitude (Eq. (11))

should contain a factor 2 x 10"I and the transition probability a

2
factor 4 x 10- . Upon substituting the Fe and Cr mass into Eq. (30)

we have (we take mo = 1/8 R, M -• 1023 cells/cc, m = 3.8 X 10 4 R,

I =F,=R/8)

F, 11-1 _ 2 × lO1% (31)

Now,

R 2 X 1016 sec-1

Hence,

T 1-• 2.5 X 10-7 sec (stainless steel) (32)

For a steel that is predominantly 90 per cent Fe and 10 per cent Ni

we find

T1 - 1.5 X l0"6 sec (Fe-Ni steel)**

Physically, in time T1 an excited electron has a probability of

37 per cent (i.e., e"I) of decaying by emitting a phonon (i.e., the

square of the electron wave function contains a factor e ). In a

few times T1 all of the electrons should have decayed and hence the

*Cells (80 per cent) that contain two Fe atams contribute zero
to the amplitude (see Eq. (28)).

**For a 50-50 Fe-Cr alloy T 1 1 X 10-8 sec; for a 50-50 Fe-Mo
alloy T 1 - 10-10 sec.
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lattice gains energy of the order of the laser energy (here taken

" 103 to l04 joules per cc).* Hence, at the end of this time the

lattice energy will be greater than the vaporization energy, which

implies that the metallic lattice has beccze a fluid. This fluid

being at a very high density and temnperature ( - lO4 to 1050K) will

expand, causing large pressure gradients (i.e., shocks) etc.

We should like to point out that the time obtained here is much

longer than the time it would take if the electrons interact with

photons whose energy >> R (e.g., X-rays). In this case the wave-

length of the excited electron is much smaller than the interatonic

spacing and the velocity of the electrons - 108 cm sec -1. The elec-

tron makes collisions with atoms, giving up energy to the atoms.

Since for iron the vaporization energy (per atom) is - 1/2 ev, it will

take few (say, lo) collisions (per electron) before the metallic bonds

are broken. The time in which this happens is of the order of the mean

free path (ý lO-6 cm)** divided by the velocity of the electron

.In the Appendix we show that the transition probability for an
electron decaying by emitting two phonons is, for stainless steel, an
order of magnitude less than for single phonon emission. However, for
Fe-Ni steel, the first and second order transition probabilities are of
the same order of magnitude. This result is quite accidental since
in the first-order transition probability for steel there occurs the
difference of two nearly equal numbers and a small factor (4 x 10-2)

which takes into account that 20 per cent of the unit cells give a
non-zero scattering effect. The first-order transition probability
for most alloys is typically much larger (decay time much shorter)
than for steel (e.g., for a 50-50 Fe-Mo alloy T1 - 10-10 sec) and
hence the first-order scattering dominates (second-order decay times
are typically 10-6 sec).

**The mean free path = (na)-I, where the absorption cross-section

a, for Fe, can be taken (at X-ray energies) to be the geometric cross-
section of the Fe atom (C 2! 10-16 cm2 ). Hence, for n _ 1022, (na)-l
10"- cm.
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( - 108 cm/sec). That is, this time (for ten collisions) is of the

order of l0"13 sec.

Also, we note the manner in which a metal breaks up is similiar to

the X-ray case when the laser photon density (per electron) is much

greater than one. For, when the photon density (per electron) is much

larger than 1, the electron picks up (on the average) energy much larger

than the Fermi-energy (i.e., in this case multiphoton absorption takes

place) or equivalently, momentum much larger than the Fermi-momentum.

That is, in this case the wavelengths of the excited electrcns are much

less than the interatomic spacing. These conditions are the same as the

X-ray case.

We restate that optical-phonon decay is the principal mechanism

by which substances with band gaps (Z w aser) de-excite (e.g., dielectrics

and insulators). Where the gap spacing is much larger than the laser

photon energy, the material will be transparent to the laser beam un-

less the average energy given to the valence electrons is 2 gap spac-

ing (i.e., we would expect the material to be transparent unless the

laser photon density (per electron) is large compared to 1, so that

the electron may undergo multiple photon absorption). For further

information on multi-photon absorption see Ref. 7.

We emphasize that here we have calculated the redistribution of

excited electrons with accompanying phonon excitation under highly

non-equilibriunm conditions. Only when the photom energy is deposited

in a time which is longer than the electron-phonon decay time (_ 10"7 to

106 sec for steel) is it meaningful to think of the metal as being

vaporized instantaneously. Hence, for steel and with laser pulse lengths

< 10-7 sec it is not possible to apply immediately an equilibriun equa-

tion of state to determine pressure gradients, etc. It is necessary to
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wait a time of the order of the electron-phonon decay time before such

calculations become meaningful.

Finally, we re-emphasize that our conclusions about the decay

mechanism of transition metals depend completely on the validity of

the assumption of the "d-band trap" (i.e., the assumption that the

conduction electrons became inhibited from decaying via acoustic-

phonons because of their affinity to stay in the high-density of

states d-band). If this assumption is valid then we conclude that

in the transition metals the electron de-excitation will take place

(via optical-phonons) in a time - l107 to 106 sec as contrasted to

the simple metals where electron de-excitation takes place (via

acoustic phonon) in a time - 10"-l to 1010 sec. With laser pulse

lengths - 10-8 sec and fast photo-detectors (with resolving time

lO1-9 sec) it is conceivable that experimental investigation of the

early time history of the metallic decamposition in the transition

metals may be done.
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Appendix

TWO-PHONON DECAY

In this appendix we estimate the decay rate into two phonons.

Two-phonon final states come about in two different ways (see Figs. 3

and 4).

First consider the process depicted in Fig. 2. The amplitude

for this process arises out of the second-order expansion of the elec-

tron potential energy. Now,

r2 = 21r H(2) 12 D (34)
2 int (

where, fran Eq. (4),

H(2) 1ý
(2int %,b) (% bb) Vo vl -isV ) (35)

L,b

and

D-= (2t)3  jl d3 P2 d3P Pout) 3 (Ein- Eot) **(36)

Expanding the Q' s in terms of phonon creation and annihilation opera-

tors, and retaining those terms that correspond to the creation of two

phonons, we find

= ~~i [ l~ 1/2 V/2 e,
""12 2 . 21 eK,b

jp * V d3rj X 5(P - P-1 (37)

We denote (Hint) by M 2.
if

Here we are dealing with a three-particle final state.
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Fig.4 -- Trwo successive virtual single-phonon decoys
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In obtaining Eq. (37) we have performed the sumation over L (see the

derivation of Eq. (10) for details). Assuming a representation for

V(r) such as in Eq. (14) we have to evaluate integrals of the form:

S•p' ýVva(r) 1p d3 r (38)

Where the integration is performed over only the unit cell. Inte-

grating Expression (38) twice by parts we obtain

(O - K') (k - R') ,I V(r) Tp, p d3r (39)
p p

The integrated terms are zero because the integrands are periodic

over the lattice. The integral appearing in Expression (39) is identi-

cal to the integral I discussed in Section III (see discussion preced-

ing Eq. (22)).

For optical modes Eq. (37) yields (on performing the sLmmnation

over b)

M 2 -- (I/2N o) (l/Ml + '/2) F' c • ,) , ( -, (0

Sane qualitative features of the second-order amplitude may be seen

fran Eq. (39). First, if Ml= M2 we see that rM2 j o. We have seen

that the first-order term vanishes if Ml = M2 (see the discussion

following Eq. (13)). Here, the ionic displacements appear quadratically

and thus the scattering amplitude from each ion in the unit cell has

*
The electron wave functions are assumed to be normalized to unity

in the unit cell.

As before, we neglect processes where G I 0.
We have arbitrarily set WK, = CX = (,o/2 where wo - (1/8)R.
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the same relative sign. In pure metallic crystals (e.g., pure Fe)

the first non-vanishing contribution to the decay rate comes from the

second-order term in the expansion of the electron potential energy.

In order to compare this second-order rate with the first-order rate

for steel we put MI = M2 = mass of the Fe atom (since Fe is the major

constituent of steel). Second, we see that, in the second order,
*

transverse phonons will couple. Here, however, since we are interested

only in an order of magnitude estimate, we shall neglect the contribu-

tion to the decay rate arising from transverse phonons. With these

simplifications Eq. (40) becomes

Upon substituting Eqs. (36) and (41) into Eq. (34) we find

r.2 = (fI/,,,, 0) ••f d3K d3K'/(2.) 5 {dP,, - K -_ ?i)2/2m]- wo)

x (K •(O + R' )AO)2 (RI. (k + (I )IK' )2} (42)

where the upper limit on these integrals is K max (Kmax t/lattice

spacing). Changing from the variables K, K', to K, •( = K + K') and

using conservation of momentum to express K' .Q and K' 2 in terms of

Q and K we find

,-!, [/,(2,K] (I/NM o)2 j"d3Q 5(i.•m - Q•,p - W)

x d3CQ2 R••2( R2K2(Q2 + K 2_ . ) (43)

where w is given in Eq. (29).

Since, in general, K - K' is not parallel to K or K'.
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In order to obtain an order of magnitude estimate of the K inte-

grate in Eq. (43) we take Q parallel to K. With this we find

2 - 2 2

fdi3K _Q - -)(-) Q4 , (44)
K (Q.ý + K 2 3~ f k Kax

By substituting Eq. (44) into Eq. (43) and performing the Q in-

tegral by means of the delta function we find

2m K3 1

r 2 max 0)0 p5 f dx2
15(2) 3a (x a2 ) 2

x [(x+ x2a2) +) ( x/2 2

where

a2 = 2 W/pP (46)

The lower limit on the integral in Eq. (45) canes fran the requirement

that K be real. The integration over x is elementary. The final re-

sult is

K3/

r I2 m max_ (I/NM wa) 2 p5(1 - V21(16/3 - (16a2/3) + a4) (47)2 3 (27) 30

Putting M = mass Fe atom and K - 100 R we find

F2 - 3 x 10-IR

or

T F2 1 2 -l06 sec (48)

Next, consider the process shown in Fig. 3. That is, double

phonon emission by two successive first-order emissions, each of which
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is characterized by an amplitude given by Eq. (12). When the electron

in the intermediate state is nearly free, the two successive emissions

are essentially independent of each other (i.e., this case is essential-

ly multiple single-phonon emission, and should not, strictly speaking,

be thought of as double-phonon emission). In this case we expect the

decay rate to be of the same order of magnitude as P1.

On the other hand, when the electron in the intermediate state

is highly virtual the situation is quite different. For example,

Ein - Eint - E, where Ein is the energy of the electron in the

initial state, and Eint is the energy of the phonon (which is in a

free state) and electron (which is in a virtual state) in the inter-

mediate state. In this case an order of magnitude estimate for this

2, 8o.rders of magnitude
decay rate is - F/,-1- R. This rate is many oresomgitd

less than r2.

In Section IV we have seen that for steel T1 - 10-7 sec (TJT1 - 10).

Thus we conclude that double-phonon emission will be important only

when we are dealing with a very pure metal (not an alloy, since for a

typical alloy the unit cell contains atoms with not too small mass

differences--compared, say, with steel--and hence P1 will dominate).

Lastly we emphasize that the calculation of r2 is, at most, very

crude since we have even less knowledge of the second derivative of

the electron potential energy than we have of its first.
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